Ламинарное течение жидкости
Напомним, что ламинарное течение - это упорядоченное слоистое течение, математическое описание которого основано на законе трения Ньютона.

Для начала рассмотрим установившееся ламинарное течение в круглых трубах. В трубе диаметром 2r0 выделим цилиндрический объём жидкости между сечениями 1 и 2 длиной l и диаметром 2r. Отметим, что давления в сечениях 1 и 2 соответственно равны P1 и P2. Распределение скоростей по сечению потока на всей длине трубы одинаково, поэтому одинаково и значение коэффициента кинетической энергии ?. На рассматриваемый объём, движущийся со скоростью V, действуют силы давления (на торцовые поверхности) и силы сопротивления, вызванные вязким трением ? на боковой поверхности. Как уже было получено выше

а уравнение сил, действующих на выделенный объём, будет выглядеть


Выразив отсюда


Из последней формулы следует, что касательные напряжения трения линейно зависят от радиуса потока. Это показано на рисунке. С другой стороны, касательные напряжения по закону Ньютона равны



Из этого соотношения можно найти приращение скорости

т.е. при увеличении радиуса скорость уменьшается, что соответствует эпюре скоростей.
После интегрирования, получим





которая, с математической точки зрения, является квадратной параболой и очерчивает эпюру распределения скоростей по сечению потока. Максимальное значение скорости достигается в центре потока при r=0 и составляет


Используя значение скорости u, определим величину расхода через кольцевую площадь d?c шириной dr, находящуюся на расстоянии r от центра трубы. Выше было отмечено, что скорость в любой точке этого кольца одинакова, и тогда


Проинтегрировав dQ по всей площади трубы (т.е. от r = 0 до r = r0), получим

Средняя скорость в таком потоке будет

Заметим, что средняя скорость потока с параболическим распределением скоростей вдвое меньше максимальной.
Из последнего выражения легко получить закон сопротивления потоку, т.е. зависимость потерь энергии от размеров и параметров движения жидкости:

Заменив в этом выражении динамический коэффициент вязкости


Полученное выражение носит название закона Пуазейля и применяется для расчета потерь энергии с ламинарным течением.
Эту же величину потерь на трение ранее мы выразили формулой Дарси. Если приравнять правые части формулы Дарси и закона Пуазейля, получится:

Заменим расход произведением


Искусственно умножим и разделим числитель и знаменатель на V:

Очевидно, что в этом случае

Это выражение для коэффициента гидравлического трения при ламинарном движении жидкости хорошо подтверждается экспериментом и используется на практике для определения потерь энергии в потоке при ламинарном течении. Иногда этот коэффициент обозначается

Зная полученные выше выражения для скорости элементарной струйки u и для средней скорости потока V, можно вычислить значение коэффициента кинетической энергии


Учтём, что





Раскроем интеграл в числителе

Проинтегрируем эту функцию в пределах от 0 до r0, т.е. по сечению потока

Теперь рассмотрим знаменатель выражения для ?:

Разделив полученные числитель на знаменатель, будем иметь значение коэффициента кинетической энергии ?:

Это значит, что кинетическая энергия ламинарного потока с параболическим распределением скоростей вдвое превышает кинетическую энергию того же потока с равномерным распределением скоростей.
В некоторых случаях удобно знать другой поправочный коэффициент, который учитывает отличие действительного количества движения потока от его значения, посчитанного с использованием средней скорости потока V. Этот коэффициент обозначают ?0, называют коэффициентом количества движения и вычисляют по формуле

По аналогии с вычислением коэффициента ?, подставив вместо u и V соответствующие выражения, после возведения в квадрат и замены переменной интегрирования получим для числителя:

После интегрирования в пределах от 0 до r0, числитель примет вид

Знаменатель выражения для ? перепишем в виде

После деления числителя на знаменатель получим значение коэффициента количества движения ?0:

Эта величина для ламинарного потока с параболическим распределением скоростей, так же как и ?, является величиной постоянной.
Все приведённые зависимости справедливы для участков прямых гладких труб постоянного сечения с параболическим распределением скоростей по живому сечению потока.