Дифференциальные уравнения Эйлера для движения идеальной жидкости
Рассмотрим произвольную точку А в потоке жидкости. Давление в этой точке обозначим буквой P. Выделим вблизи неё прямоугольный объём жидкости размерами dx, dy, dz.
Так же как и в случае вывода дифференциальных уравнений для покоящейся жидкости, систему уравнений, выражающую силы, действующие на выделенный объём, получим в проекциях на оси координат. Определим разность давлений, действующих на противолежащие грани:










соответствующей координате




Кроме сил давления, на выделенный объём будут действовать инерционные силы в общем случае определяемые ускорениями ax, ay, az



Под действием этих сил рассматриваемый объём жидкости движется с ускорением



которая носит название дифференциальные уравнения Эйлера для движения идеальной жидкости. Эти уравнения справедливы для идеальной жидкости, т.е. для движения без внутреннего сопротивления, и они описывают связь между силами в жидкости и законами её движения.